Using Microalgae as a Platform to Study

Culture Techniques
Isolation of an Intracellular Product (oil)
Conversion of Extracted Oil to Biodiesel

BIOMAN 2013
Intermediate Track

Rhykka Connelly
Program Manager
University of Texas Algae Program (UTAP)
Microalgal Products

- Biofuels
 - JP-8 fuel
 - methane
 - removal of nutrients and metals
 - clean water
 - sequester/scrub CO₂
- Algae
- Food Additives
 - protein
 - omega fatty acids
 - antioxidants
 - animal feed
- High Value Products
 - biofertilizer
 - pharma- and nutraceuticals

The diagram illustrates the various products and applications of microalgae (Algae).
Structure of a Microalga

Chlorella sp.

Beal C., Mayer C., and Romanovicz D., 2010, University of Texas at Austin.
Structure of a Microalga – At the Membrane

- Cell wall
- PL Bilayer
- Lipid droplet
- A phospholipid: Phosphatidylcholine
 - Choline
 - Phosphate
 - Glycerol
 - Fatty acids
- Glycerol
- Palmitic acid (16:0)
- Oleic acid (18:1)
- Linolenic acid (18:3)

Other compounds:
- Cellulose
- Lignin-like compounds
- Algic acid
Structure of a Microalga – At the Membrane

A phospholipid
Phosphatidylcholine

Fatty acids

Glycerol

Choline

Phosphate

Biodiesel

Glycerol

Methyl esters of three fatty acid molecules

Triglyceride

Palmitic acid (16:0)
Oleic acid (18:1)
Linolenic acid (18:3)

Glycerol
Structure of a Microalga

Chlorella sp.

Beal C., Mayer C., and Romanovicz D., 2010, University of Texas at Austin.
Structure of a Microalga – Light Harvesting and Photoprotection

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
• Carotenoids suppress damaging photochemical reactions, particularly those including oxygen, that can be induced by bright sunlight.
Algae Targets

• fatty acids and hydrocarbons – refine into biodiesel and gasoline

• carotenoids – nutraceutical products

• carbohydrates
 • food additives
 • ethanol

• protein – animal feed supplement

• biomass
 • methane
 • syngas
 • biofertilizer
Growth Systems

Algae Phototrophic Growth Scale-up
*density 200mg/L – 2 g/L

Algae Heterotrophic Growth
*density 2 g/L – 150 g/L
Biomass Scale-up

Metabolite Analysis + Engineering Support = Product and Process Optimization

Product Extraction and Biocrude Production

value-added products
biocrude

Biocrude Production Unit
University of Texas Product Recovery Unit
University of Texas Algae Concentration Unit
Today’s Lab – Establishing and scaling up a microalgae culture

1. Acquiring algae
2. Starting a 500ml culture in a photobioreactor
3. Monitoring growth kinetics (dry cell weight, spectrophotometry to measure chlorophyll, microscopy)
4. Troubleshooting (competing algae, predators, bacteria)
5. Transferring a starter culture to a working scale 2L photobioreactor system
6. Examining the effects of light quality on the accumulation of high-value products