

QUALITY SYSTEMS in BIOSCIENCE MANUFACTURING BIOMAN Conference July 2015

Prepared by Gretchen Ingvason as part of NSF ATE Grant #1304474 -(National Science Foundation Advanced Technical Education)

Start near. Go far.

AGENDA

- Concepts in Quality
- Quality Systems
- Quality Operations
- Investigations
- Bring it to the Classroom

MY BACKGROUND

BIOTECHNOLOGY

.. feeding, fueling and healing the world.

CONCEPTS IN QUALITY

What is Quality? Industry Overview Standards & Regulations

QUALITY IN MANUFACTURING

- Quality is an important component of cost of goods sold.
- Tracked through multiple measures.
- Lack of quality can lead to product and company failure.

WHAT IS QUALITY

Quality is a product (or service) with the *features and characteristics* which determine *desirability* and can be *controlled* to *meet certain basic requirements*.

- Who determines desirability of features and/or characteristics?
- Why are they desirable?
- What are the requirements that can be controlled?
- How is it known if the requirements are met?

Quality is determined by the Customer (end-user) based on their expectation and needs.

QUALITY ORGANIZATIONS

- Regulatory: Government organizations with legal oversight of industry
 - US FDA, European Union, etc.
- Independent: Organizations providing external review of industry processes
 - International Organization for Standardization (ISO)
 - ANSI (American National Standards Institute)
 - USP (US Pharmacopeia Convention)
- Trade: Organizations supported by industry representing common interests and processes
 - American Society for Quality (ASQ)
 - ASTM International (American Society for Testing & Materials)

COST OF QUALITY

- Internal
 - Scrap, Rework
- Appraisal
 - Material Receipt
 Measurement
 - In-process/Final Inspection
- Prevention
 - Improvement, Planning
- External
 - Returns, Warranty

Quality is a value that **must be built into** the product. Quality **cannot be inspected into** the product

Quality – Career Pathways

- Multitude of industries
 - Pharmaceutical, Biotechnology, Medical Device, Automotive, Aerospace, Plastics, Food and Beverage, etc.
- ASQ Certifications (www.asq.org)
 - Certified Quality Improvement Associate
 - Certified Process Analyst
 - Certified Quality Inspector
 - Certified Quality Technician
 - Certified Calibration Technician
- Career Path
 - Quality Engineering
 - Regulatory Specialist
 - Utilize (leverage) current experience
- Entry into Engineering Technology or 4-year degree

VARIOUS INDUSTRIES & SECTORS

- Manufacturing
 - Corporate offices, Plants
 - Controlled Environments
- Service
 - Corporate Offices
 - Field work

MANUFACTURING

Aerospace

- Complete vehicles, components
- BioTechnology
- Chemicals
 - Adhesives, paint, pesticides, soaps
- Computer & Electronics
 - Audio/video, components, etc.
- Fabricated Metal Products
 - heat treating, engraving, nails,
- Foods
 - Animal feed, seasonings, snacks
- Machinery
 - Mowers, HVAC, assembly equipment

- Medical Devices & Supplies
 - Pacemakers, gurneys, filters
- Measurement Systems

 Gages, Vision Systems, CMM
- Paper Products

 Boxes, gift wrap, diapers
- Pharmaceuticals
 - Prescription, over-the-counter
- Rubber & Plastic Products
 - Tires, hoses, bags, pipes
- Transportation & Parts
 - Cars, trucks, boats, components
- Various Retail Goods
 - Toys, clothing, sporting goods

SERVICE

- Construction
 - Buildings, Infrastructure, roofing
- Consulting
 - Management, Scientific, technical
- Educational
 - Training, K-12, Secondary
- Financial & Insurance
 - Banks, Mortgages, Brokers
- Government / Public Admin
 - Judicial, security, fire protection
- Healthcare
 - Blood banks, diagnostic labs

- Information Services
 - Publishing, archiving
- Inspection Services
 - Residential, Power plants, Electrical
- Retail
 - Department Stores, Auto Dealers
- Social Services
 - Relief Services, Vocational Rehab
- Scientific / Technical
 - Testing Services, Engineering Firms

BIOTECHNOLOGY - Careers

- Agriculture / Aquaculture
 - Protect animals/crops from disease
 - Growing plants/animals in water
- Biodefense
 - Protect air/food/water from pathogenic microorganisms
- Biofuels
 - Diesel/ethanol purified from natural sources
- Biopharmaceuticals
 - genomics, vaccines
- Cosmetics
 - Discover and manufacture components

- Environmental Monitoring
 - Lab methods (i.e. microarrays) used to monitor air/water/soil
- Food Safety
 - Identify pathogens or chemical additives and their source
 - Track source of meat (illegal/poached)
- Forensics
 - Criminal investigations (DNA)
- Medical Diagnostics
 - Various tests

ISO and FDA

- Quality is a product (or service) with the *features and characteristics* which determine *desirability* and can be *controlled* to *meet certain basic requirements.*
- Quality System
 - Say what you do (documents)
 - Do what you say (training)
 - Record what you did (write it down, quality records)
 - Check the results (analysis)
 - Act on the difference (improvement)

Quality is determined by the Customer (end-user) based on their expectation and needs.

- International Organization of Standardization (ISO)
 - ISO 9001:2008 Quality Management Systems Requirements
 - ISO 13485:2003 Medical Devices Quality Management Systems Requirements for Regulatory Purposes
 - ISO/IEC 17025:2005 General Requirements and Competencies of Testing and Calibration Laboratories
 - ISO/TS 16949 (Automotive)
 - AS 9001 (Aerospace)

- US Food & Drug Administration (FDA)
 - 21CFR (Code of Federal Regulations)
 - Part 210/211 Pharmaceuticals
 - Part 600/601/610 Biologics
 - Part 820 Medical Device
 - International Counterparts
 - Japan Pharmaceutical & Medical Device Agency
 - Europe European Directives
 - Canada –Health Canada

CODE OF FEDERAL REGULATIONS (CFR)

- CFR is the codification of the general and permanent rules and regulations (sometimes called administrative law)
- The titles are broken down into: Chapters, Parts, Sections, and Paragraphs

Example: 21 CFR 820.30(d) (1) would read Title 21, Part 820, Section 30, Paragraph (d)(1)

CODE OF FEDERAL REGULATIONS (CFR)

Title 1	General Provisions	Title 18	Conversation of Power & Water Resources	Title 35	Reserved (Formerly Panama Canal)
Title 2	Grants and Agreements	Title 19	Customs Duties	Title 36	Parks, Forests, and Public Property
Title 3	The President	Title 20	Employee's Benefits	Title 37	Patents, Trademarks, and Copyrights
Title 4	Accounts	Title 21	Food and Drugs	Title 38	Pensions, Bonuses & Veterans Relief
Title 5	Administrative Personnel	Title 22	Foreign Relations	Title 39	Postal Service
Title 6	Domestic Security	Title 23	Highways	Title 40	Protection of Environment
Title 7	Agriculture	Title 24	Housing & Urban Development	Title 41	Public Contacts and Property Management
Title 8	Aliens and Nationality	Title 25	Indians	Title 42	Public Health
Title 9	Animals and Animal Products	Title 26	Internal Revenue (aka Treasury Regulations)	Title 43	Public Lands: Interior
Title 10	Energy	Title 27	Alcohol, Tobacco & Firearms	Title 44	Emergency Management & Assistance
Title 11	Federal Elections	Title 28	Judicial Administration	Title 45	Public Welfare
Title 12	Banks and Banking	Title 29	Labor	Title 46	Shipping
Title 13	Business Credit and Assistance	Title 30	Mineral Resources	Title 47	Telecommunication
Title 14	Aeronautics & Space (aka Federal Aviation Regulations)	Title 31	Money and Finance: Treasury	Title 48	Federal Acquisition Regulations Systems
Title 15	Commerce and Foreign Trade	Title 32	National Defense	Title 49	Transportation
Title 16	Commercial Practices	Title 33	Navigation & Navigable Waters	Title 50	Wildlife & Fisheries
Title 17	Commodity and Securities Exchanges	Title 34	Education		

• cGXP -- Current Good [] Practices

- Manufacturing (cGMP)
 - Pharmaceutical
 - Medical Device
- Laboratory (cGLP)
- Clinical (cGCP)

- cGXP -- Current Good [] Practices
 - Manufacturing (cGMP)
 - Pharmaceutical
 - Medical Device

"... practices required in order to conform to guidelines recommended by agencies that control authorization and licensing for manufacture and sale of ... drug products, and active pharmaceutical products. <u>These guidelines provide</u> <u>minimum requirements</u> that a ... <u>manufacturer must meet</u> to assure that the products are of high quality and do not pose any risk to the consumer or public *"* (Wikapedia com)

..." (Wikapedia.com)

- Laboratory (cGLP)
- Clinical (cGCP)

- cGXP -- Current Good [] Practices
 - Manufacturing (cGMP)
 - Pharmaceutical
 - Medical Device
 - Laboratory (cGLP) (non-clinical)

"..embodies a set of principles that provides a framework within which laboratory studies are planned, performed, monitored, recorded, reported and archived. These studies are undertaken to generate data by which the hazards and risks to users, consumers and third parties, including the environment, can be assessed ... GLP helps assure regulatory authorities that the data submitted are a true reflection of the results obtained during the study and can therefore be relied upon when making risk/safety assessments. " (Wikapedia.com)

- Clinical (cGCP)

- cGXP -- Current Good [] Practices
 - Manufacturing (cGMP)
 - Pharmaceutical
 - Medical Device
 - Laboratory (cGLP) (non-clinical)
 - Clinical (cGCP)

"... enforces tight guidelines on **ethical aspects of a clinical study.** High standards are required in terms of comprehensive documentation for the clinical protocol, record keeping, training, and facilities, including computers and software... GCP guidelines include protection of human rights for the subjects and volunteers in a clinical trial. It also provides **assurance of the safety and** *efficacy of the newly developed compounds..."* (Wikapedia.com)

QUALITY OPERATIONS

Incoming Inspection Product Release Manufacturing Support

PROCESS FLOW - MANUFACTURING

- Say what you do (documents)
- Do what you say (training)
- Record what you did (write it down, quality records)
- Check the results (analysis)
- Act on the difference (improvement)

INSPECTION

- Customers want expectations and needs met consistently
 - Fitness for use
 - Form is free of defect
 - Functions as intended
- Evaluate product quality by comparing measurement results with specifications
- Inspection process:
 - Measurement of sample
 - Comparison against specification
 - Decision based on results
 - Corrective action, if necessary

Inspection is after the fact – materials used, product built, labor spent

MEASUREMENT

- Measurement is a method for evaluating a property or characteristic of an object and describing it with a numerical or nominal value.
 - Dimensional (e.g. length, diameter, volume)
 - Functional (e.g. flow rate, tensile strength)
 - Chemical (e.g. material type, pH, etc.)
 - Service (e.g. time between calls, maintenance response, etc.)
 - Attribute (e.g. color, clarity, etc.)
 - etc.

ACCURACY vs PRECISION

Accurate but not precise

Precise but not accurate

Neither accurate nor precise

Accurate And Precise

METROLOGY PROGRAM

- Measurement Fundamentals
 - Methods, equipment
- Calibration System
 - Verification

METROLOGY PROGRAM

Measurement Fundamentals

- Methods
- System
- Capability
- Equipment specifications
- Environmental Controls
- Standards Usage
- Confidence (Uncertainty) Programs
- Data

How to trust the results

METROLOGY PROGRAM

Calibration System

- Adequacy of equipment & standards
- Procedures (Methods)
- Internal Process / External Vendor program
- Intervals
- Quality (Confidence)
- Scheduling
- Environmental Controls
- Software Validation
- Labels
- Measurement Traceability

How to trust the equipment/tools
INSPECTION TECHNIQUES

- Qualitative or Quantitative
- Destructive or Non-Destructive
- 100% or Sample

INSPECTION PROCESS – DATA ANALYSIS

- Statistical Analysis
 - Descriptive organization, summarization & display of data
 - Inferential –uses sample to draw conclusions about a population
- Understanding data
 - Measures of central tendency (mean, median, mode)
 - Measures of dispersion (range, variance, standard deviation)
 - Measures of shape (normal distribution, weibull, etc.)

SEVEN QUALITY TOOLS

- 1. Flow Chart / Run Chart
- 2. Check Sheet
- 3. Histogram
- 4. Scatter Plot (Diagram)
- 5. Control Charts
- 6. Pareto Chart
- 7. Cause and Effect Diagram (a.k.a. Ishikawa or Fishbone)

SEVEN QUALITY TOOLS

- 1. Flow Chart / Run Chart
- 2. Check Sheet
- 3. Histogram
- 4. Scatter Plot (Diagram)
- 5. Control Charts
- 6. Pareto Chart
- 7. Cause and Effect Diagram (a.k.a. Ishikawa or Fishbone)

HISTOGRAM EXAMPLE

7/6/2015

BIOMAN Conference

SCATTER PLOT (DIAGRAM)

SEVEN QUALITY TOOLS

- 1. Flow Chart / Run Chart
- 2. Check Sheet
- 3. Histogram
- 4. Scatter Plot (Diagram)
- 5. Control Charts
- 6. Pareto Chart
- 7. Cause and Effect Diagram (a.k.a. Ishikawa or Fishbone)

STATISTICAL PROCESS CONTROL (SPC)

• Measure of process stability or variability

"... SPC is applied in order to monitor and control a process. Monitoring and controlling the process ensures that it operates at its full potential. At its full potential, the process can make as much conforming product as possible with a minimum (if not an elimination) of waste (rework or scrap)..."

Wikapedia.com

• A process under statistical control is predictable.

SPC: X-Bar / R Charts

PROCESS MEASURES

- Process Measures
 - Process Performance
 - Process Capability

INVESTIGATIONS

5W's1H 5Whys 7-Step process Tools (pareto, cause/effect, etc.)

QUALITY SYSTEMS

- Say what you do (documents)
- Do what you say (training)
- Record what you did (write it down, quality records)
- Check the results (analysis)
- Act on the difference (improvement)

Act on the difference

- Root Cause
 - The fundamental (true) reason a product or process nonconformance occurred.

Act on the difference

- Root Cause
 - The fundamental (true) reason a product or process nonconformance occurred.
- Root Cause Analysis (RCA)
 - Structured investigation (review) aiming to identify (determine) the true cause of a product or process nonconformance (problem) AND the actions necessary to eliminate it.
 - This extends beyond solving the symptoms of a problem, instead drilling down to discover its most fundamental cause.

Act on the difference

- Root Cause Analysis
 - Get to the root of the problem, not just immediate fix
 - Eliminate recurrence
- Investigative process
 - 5 Whys
 - Who, What, Where, When, Why, How
 - Cause & Effect Diagram

Cause & Effect Diagram (aka Ishikawa or Fishbone)

METHOD COMPARISON

Andersen & Fagerhaug	PDSA	Six Sigma	7-Step	8-Disciplines (8D)	
			Recognize		
Understand the Problem	Plan	Define	Define	Plan	
				Select Team	
Identify Potential Solutions				Define	
				Interim Containment & Actions	
Data Collection	Do	Measure	Measure	Determine/ ID / Verify Root Cause &	
Data Analysis		Analyze	Analyze	Escape Points	
Identify Root Cause	Study	Improve	Improve	Choose / Verify Permanent Corrections	
Root Cause Elimination	Act	Control	Control	Validate Corrective Actions	
			Sustain	Preventive Actions	
Acknowledge Success				Congratulate Team	

IS – IS NOT MATRIX

Problem Taper length incorrect	IS	IS NOT	Distinction
What happened	Reported as short	Found in retains	OOS at customer
Where it happened	Reported by customer	final inspection data for product lot	OOS at customer
When it happened	<i>Most recent product lot</i>	10 lots shipped in past 8 months	No pattern in complaints
Extent (frequency)	<i>Reported as every piece inspected</i>	No NCRs reported last 16 months First complaint in 24 months	No internal pattern
Who did the inspections	Unknown inspector	<i>multiple inspectors</i> over 16 months	<i>New inspector at Customer?</i>

This was determined to be an inspection issue at the Customer.

BRING IT TO THE CLASSROOM

"Stackable Training for Laboratory Science and Quality Technicians in Biopharmaceutical and Biomedical Manufacturing"

Funded by National Science Foundation Advanced Technical Education Award Number: DUE-1304474

Principal Investigator:	John Henshaw, PhD,		
	Dean Workforce Development		
Program/Curriculum:	Gretchen Ingvason		
	Sr. Learning Specialist		

STACKABLE CURRICULUM

PROGRAM	OVERVIEW	CONTACT TIME		ASQ CERTIFICATION TARGET
Manufacturing Readiness Training – Quality Systems	General QA/QC principles	Non- credit	12 hours	NA
Quality Systems Training	Quality Professional Introduction ISO9001:2008 & FDA GMP Metrology & Inspection Root Cause Analysis Lean Six Sigma	Non- credit	40 hours	Quality Improvement Associate Quality Process Analyst
ALQS Certificate (Analytical Laboratory & Quality Systems)	Core Classes AQS 110 Intro to Quality & Metrology CHE 180 Instrumental Analysis BTC 191 Regulatory & Compliance	Credit	29 credit hours	Quality Inspector
BTDQ Associates Degree (Biotechnology Degree with Quality Concentration)	Biotechnology Degree ALQS Certificate Core and AQS 200 Root Cause Investigation	Credit	65-67 Credit hours	Quality Technician

CODES OF PROFESSIONAL PRACTICE

- Honesty
- Integrity
- Transparency
- Accountability
- Confidentiality
- Objectivity
- Respectfulness
- Obedience to the Law

Teamwork, Communication (verbal/written), Data driven, Ethics - "Do no harm"

BRING TO THE CLASSROOM

- Mathematics
 - Statistic
 - Accuracy / Precision
- Metrology
 - Repeatability / Reproducibility
 - Error analysis
- Documentation Skills
 - Laboratory notebooks
 - Reporting (include failed results)
- Investigation Techniques

