

Metrology

Instrumentation and Its Limits

Science of physical measurement applied to variables such as dimensions

Outline

1. Measurement using balances

- 2. Precision versus Accuracy
- 3. Calibration of balances
- 4. Validation of pipetmen

Types of Balances

Labs are equipped with two types of balances:

- Analytical balance
- Top loading balance

The primary difference between these instruments is <u>Significant Figures</u>

Precision = +/-0.01g

Top Loading Balance

Used when less quantitative results are required (+/- 0.01g) (Capacity < 1200 g)

Analytical Balance

Used for measurements requiring highly quantitative results i.e. +/- 0.0002 g (Capacity < 100 g)

Bio-Rad Pipetmen

Pipets can measure +/-1% of their largest volume and be accurate

All measurements contain some error and it is calculated by the following formula:

Percent Error =

<u>True Value</u> - <u>Average Measured Value</u> X 100% True Value

Standard Deviation Gives a Measure of Variability

$$\mathbf{S} = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

What are Significant Figures?

The necessary number of figures (digits) required to express the result of a measurement or calculation so that only the last digit in the number is in doubt.

 Measuring gives significance (or meaning) to each digit in the number produced.

Why Consider Significant Figures?

- Science depends upon experimentation which requires numerical measurements.
- Measurements are taken from instruments made by other human beings.
- NO measurement is exact
- Error is always a factor

Determining Significant Figures

Last figure is estimated in measuring 2.33

- All whole #'s are significant 2.33 = 3 sig figs
- All zeros between 2 numbers are significant
 3 sig figs
- Zeros to the right of whole number digits are significant if prec by a decimal point

203.00 = 5 sig figs

- All zeros to the right of a decimal point & whole number are significant 2.0230 = 5 sig figs
- Zeros to the right of a decimal but to the left of a whole number are not significant 0.0203 3 sig figs

The accuracy of an analytical measurement is how close a result comes to the true value. The analytical method is calibrated using a known standard to determine the accuracy of a measurement.

- The reproducibility of multiple measurements.

- It is evaluated statistically using standard deviation, standard error, or confidence interval.

Measurement Requires Accuracy and Precision

Accuracy vs Precision

Calibration of Balances

- SNBC²
 - Balance is reset to detect a specific weight according to directions
 - A 200.00 g standard is placed on the balance
 - After recalibrating, the balance will then show a value equal to the standard

Validation of Pipetmen

SNBC²

Pipetman is selected and set to a specific volume : 1000 µl or 200 µl

- Water is drawn up to a desired volume and place into weighed small beaker
- Using the equation:

```
Density= Mass/Volume
```

*calculate the volume using 1 gram/ml for density of water

Percent Error

The deviation from an expected value can be expressed as a Percent Error

To calculate the Percent Error use the formula below:

% Error = <u>True Value – Average value</u> x 100

True Value

The spectrum of electromagnetic waves ranges from low-frequency radio waves to high-frequency gamma rays. Only a small portion of the spectrum, representing wavelengths of roughly 400–700 nanometers, is visible to the human eye. © Merriam-Webster Inc.

Spectroscopy

When light of a specific wavelength interacts with a substance, the subsequent energy transfer results in:

- 1. Absorption
- 2. Fluorescence

Absorption

As the light hits a substance, energy is transferred to the substance thereby raising its energy to an excited state.

Fluorescence

Molecular absorption of a photon triggers the emission of another photon with a longer wavelength when the molecule relaxes back to its ground state.

- Excitation: $S_0 + hv \rightarrow S_1$
- Fluorescence: $S_1 \rightarrow S_0 + hv$
 - h = Planck's constant
 - v = frequency of light
 - S_0 = ground state of the fluorescent molecule
 - S_1 = excited state

Examples of Fluorescence

Molecules that are excited through light absorption can transfer energy to a second molecule, which is converted to its excited state and can then fluoresce. Fluorescent lights Light emitting diodes (LEDs) Mercury vapor streetlight **Glow sticks** Compact fluorescent lighting (CFL)

UV/Vis Spectrophotometer

Principle:

Absorption of light in the visible and ultraviolet spectrum results in changes electronic structure of molecules

UV/Vis Spectrophotometer

Visible range: Tungsten lamp (400 – 700 nm) UV range: Deutrium lamp (200 – 400 nm) Sample cells Detector

Mirrors

Grating Monochrometer

Application

Lambert-Beer Law A = εcl where:

- A = absorbance
- ϵ = molar extinction coefficient (L mmol⁻¹ cm⁻¹)
- c = molar concentration (mM)
- I = pathlength (cm)

The Lambert-Beer law is used to accurately determine the concentration of a substance by measure absorbance at a specific wavelength

Determining Nucleic Acid Concentration

Quantitative measurements (μg) for nucleic acids (DNA and RNA) at A_{260}

A = εcl

- ϵ is specific for each type of nucleic acid
- -1 OD₂₆₀ of ds-DNA = 50 μ g/mL
- 1 OD_{260} of ss-DNA = 37 $\mu g/mL$
- 1 OD₂₆₀ of ss-RNA = 40 μ g/mL

Other Wavelengths

- A₂₈₀: Protein
- A₂₃₀: Phenol and peptide
- A_{260/280}: Purity of nucleic acid preparation (Pure range 1.8 – 2.0)

Terminology

Solution: A homogenous liquid mixture composed of two or more substances

Solute: Substance which dissolves in the solvent $(ex H_2 0)$

Solvent: Liquid in which solute is dissolved

Concentration: The ratio of the mass of a solute to the volume of solution Examples: g/mL, mol/L, %

Dilution (factor, medium, volume):

Serial dilution is logarithmic

Linear dilution using $C_1V_1 - C_2V_2$

Terminology (cont.)

Equally divided portions of a sample

Buffer: A salt solution which resists change in pH upon addition of acid or base

iquot:

- Reagent:A substance which is involved in or
consumed during a chemical reaction
detect other substances
- *Meniscus:* A curve in the surface of a liquid which results from interaction with the container

Common Buffers

Optimal pH ranges for common laboratory buffers

NB

Buffer system

Zwitterionic buffers

Glycylglycine - piperazine -2HCI - NaOH TRIS - maleic acid - NaOH MOPSO - NaOH MOPSO - NaOH TRIS - HCI DISPO - NaOH HEPES - NaOH TAPSO - NaOH HEPPSO - NaOH HEPPSO - NaOH TRICIN - NaOH

рΗ

pH = -log [H⁺]

- pH 7: Neutral: [H+] = 10⁻⁷
- pH > 7: Basic: [H+] > 10⁻⁷

pH < 7: Acidic: [H+] < 10⁻⁷

A pH meter is an instrument used to measure the pH of a liquid. Components include:

Probe (glass electrode)

Meter (measures and displays pH)

How pH is Measured

pH Meter

- The pH meter consists of a glass electrode and a reference electrode. It allows the pH value of the sample to be obtained by measuring the potential difference between the two electrodes with a potential difference meter.
- To calibrate the pH meter, a standard solution with a known pH value is used. As standard solutions, phthalic acid (pH 4.01), neutral phosphate (pH 6.86), and borate (pH 9.18) are mainly used.

Preparing solutions

Concentration is the ratio of the mass (or volume) of a solute to the mass (or volume) of the solution (or solvent)

- Mass/volume (%w/v)
- Volume/volume (%v/v)
- Molar volume (mol/L or M)

Sample Calculation

Ex. Prepare 1 L of 1.5 M Tris pH 7.5

- Determine total number of moles of Tris required.
 1 L X 1.5 mol/L = 1.5 mol
- Tris (MW = 121.1 g/mol)
 1.5 mol X 121.1 g/mol = 181.65 g Tris
- 3. Dissolve 181.65 g Tris in 700 mL dH₂0 (using beaker)
- 4. Adjust pH to 7.5
- 5. Transfer to 1 L graduated cylinder. Bring to final volume with dH₂0.

Material Safety Data Sheet (MSDS)

- Detailed information on
 - Physical and chemical hazards
 - Handling procedures
 - Emergency response procedures
- There must be a MSDS for every chemical used and stored in a laboratory
- MSDS for all chemicals must be read and understood before starting a procedure

• Your first line of defense are container labels Labels

Chemical manufacturers post physical and health hazards on container labels

Labels should display this universal biohazard symbol.

available at the Central

* ISSUES IN LABORATORY SAFETY *

National Fire Protection Association - NFPA CODE

http://www.orcbs.msu.edu/chemical/nfpa/nfpa.html

- Blue = Health
- Red = Flammable
- Yellow = Reactive

White = Special Hazard Ex : ACID, NO WATER

Scale = 0 - 4

Least Intense to Most Intense

LABELING... Biohazards

What is a Biohazardous material?

- •Biological in nature
- Capable of producing harmful effects on other biological organisms, particularly

Examples:

Certain bacteria, fungi, viruses, parasites, recombinant products, allergens, cultured human or animal cells and their potentially infectious agents