

GFP Transformation Lab

GFP Transformation Lab

Images taken without permission from http://bioinfo.biotec.or.th/Picture/Cell%20Tutorial/image005.jpg, http://www.plantsci.cam.ac.uk/Haseloff/SITEGRAPHICS/Jellyfish.jpeg

Bring Biotechnology to your Classroom

- Demonstrate the central framework of molecular biology
- Transform bacteria into glowing colonies
- Select for transformed Cells by antibiotic resistance
- View operon control over pGLO protein production
- Introduction to Biomanufacturing

GFP (Green Fluorescent Protein

- Naturally produced in Jellyfish— Aequorea victoria
- Discovered in 1960's
- Source of bioluminescence when exposed to UV light

Structure of the GFP Protein

Img Src: http://www.chem.leidenuniv.nl/metprot/armand/images/0291.jpg

Detecting Gene Activity

- PGLO gene is inserted into DNA near a gene of interest
- It acts as a reporter gene
 - linked to another gene & glowing protein appears if it is expressed
- Expressed in entire animals

 $Img\ Src:\ http://www.bio.umass.edu/microscopy/images/gfp.jpg$

Img Src: http://www.mshri.on.ca/nagy/graphics/GFP%20mic e.jpg

Img Src: http://www.antville.org/img/pop/gfp.jpg

Img Src: http://www.computerra.ru/pubimages/73944.jpg

Other Fluorescent Proteins

pGLO plasmid

- GFP gene
 - Codes for the GFP protein
- Bla gene
 - Codes for the enzyme β -lactamase
 - β -lactamase destroys the antibiotic ampicillin
- araC regulator protein
 - Controls expression of GFP

Overall Goal of Lab Experiment

• Use genetic engineering techniques to insert the GFP gene into $E.\ coli$ Plasmid containing gene of interest

Selecting for Transformed Cells

- Selectable Marker: Trait that helps identify a transformed cell by conferring resistance to ampicillin
- Ampicillin presence in LBAgar will kill wild type E.coli BUT
- Transformed E. coli survive in the presence of ampicillin in LB Agar

Transformed E.coli

ampicillin

Arabinose Operon

The arabinose operon in bacteria consists of the following.

Usually, the araC protein binds to the arabinose operon operator \rightarrow prevents transcription

When arabinose is present, it binds to the araC protein -> can't bind to operator → RNA polymerase can continue

Scientists modified the arabinose operon in pGLO to express the GFP gene.

araC protein binds to ____
the operator \(\frac{\rightarrow}{\rightarrow}\)
prevents transcription

When arabinose binds to araC it can no longer bind to operator → GFP gene is transcribed and translated

Central Dogma of Molecular

- Spread E. coli without plasmid (- DNA) on plain LB agar
 - Wild type E. coli can grow demonstrated
- Spread E. coli without plasmid (- DNA) on LB/amp
 - E. coli aren't already resistant to ampicillin

Transformation Yields Product

- What does this lead to?
 - Ability to produce a protein we need but can't make
 - Cell acts as the factory for the product under the correct conditions
 - Increased cell number yields increased product

Transformation Procedure

- Step 1 Prepare appropriate plates
- Step 2 Suspend cells in CaCl₂ solution
- Step 3 Add pGLO plasmid to cells/put onto ice
- Step 4 Heat Shock at 42oC /put onto ice
- Step 5 Add nutrient broth to cells
- Step 6 Streak cells on to appropriate plates

Transformation Time Line

- First step: Grow up colonies of E.coli
- Second step:
 Prepare Selective
 media
- Transform cells with pGLO plasmid
- Detect transformed cells

- 2-3 days required
- 1 day
- 45 minutes
- Results in 24 hours
- Supplies for up to 32 students

PGLO Transformed E.coli

- Cells containing pGLO plasmid are now resistant to ampicillin
- Cells containing pGLO plasmid will also glow green when arabinose

Biomanufacturing

 Upstream Processing: Growing genetically transformed cells that produce a desired protein

 Downstream Processing: Separation and purification of that product for human use