Quincy College 24 Saville Avenue Quincy, MA 02169 Document Num: UP32 Revision Number : 0 Effective Date : 17AUG22

Page **1** of **4**

SOP: Resuscitation and Culture of Viral Production Cells 2.0 -HEK293F

Approvals:

Preparers: Isso Bayala & Hetal Doshi
Reviewer: Dr. Maggie Bryans

Date: 15AUG22
Date: 17AUG22

1. Purpose:

This Standard Operating Procedure (SOP) describes the steps required for the cultivation of Viral Production Cells 2.0 in suspension under BSL-2 safety criteria. Viral Production Cells 2.0 Prototype are a clonal derivative of the HEK293F cell line and have been adapted to suspension, high-density culture in Gibco Viral Production Medium. These cells can be thawed directly into Gibco Viral Production Medium.

- 2. Scope: This SOP will be applied to initial cultivation of viral production cells 2.0 cells in suspension
- **3. Summary of Method:** Viral Production Cells 2.0 Prototype are a clonal derivative of the HEK293F cell line and have been adapted to suspension, high-density culture in Gibco Viral Production Medium. These cells can be thawed directly into Gibco Viral Production Medium.

4. Responsibilities:

- 4.1. It is the responsibility of the course instructor/lab assistant to ensure that this SOP is performed as described and to update the procedure when necessary.
- 4.2. It is the responsibility of the students/technician to follow the SOP as described and to inform the instructor about any deviations or problems that may occur while performing the procedure.

5. References:

5.1. AAV-MAX Helper-Free AAV Production System Kit Catalog number: A51217 user manual <a href="https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2FMAN0019619_AAV-MAX_Helper-

Free AAV ProductionSystem UG.pdf

- 5.2. SOP: Labconco Purifier Class II Biological Safety Cabinet Operation, Document No. UP 1
- 5.3. SOP: Bio-Rad TC20 Cell Counter
- 5.4. SOP: Trypan Blue Assay, Document No. UP6
- 5.5. SOP: Operation of Logos biosystems Luna-FL Fluorescence Cell Counter for Fluorescence Cell Counting Document Number: UP22

6. Precautions:

- 6.1. Use BL2 safety measures and practices and discard waste in biohazard containers after adding bleach.
- 6.2. Routine care should be exercised in the handling of buffers and samples of biological materials, which may have harmful biological activity in the case of accidental ingestion, needle stick etc.
- 6.3. Gloves, a lab coat and protective eyewear should be worn when handling buffers and samples.

7. Equipment and Materials:

- 7.1. Equipment
 - 7.1.1. Biological safety cabinet
 - 7.1.2. CO₂ incubator shaker

Quincy College 24 Saville Avenue Quincy, MA 02169 Document Num: UP32 Revision Number : 0 Effective Date : 17AUG22

Page 2 of 4

SOP: Resuscitation and Culture of Viral Production Cells 2.0 -HEK293F

- 7.1.3. Equipment to determine cell viability (automated cell counter or hemocytometer)
- 7.1.4. Fisher Scientific Isotemp 37°C water bath
- 7.1.5. Fisher brand microcentrifuge
- 7.1.6. Nikon E200-LED Compound Light Microscope with 100X magnification (10X objective lens)
- 7.1.7. Hemocytometer cover glass

7.2. Materials:

- 7.2.1. Vials of Viral Production Cells 2.0 Gibco catalog #A49784 (HEK293F cells)
- 7.2.2. Gibco viral production Medium catalog#A4817901
- 7.2.3. GlutaMAXTM Supplement 200mM Gibco Catalog #35050061
- 7.2.4. Sterile 125-mL PETG Erlenmeyer shaker flask with HDPE Vent Cap, Sterile Chemglass Catalog # CGN-2092-125
- 7.2.5. Pipette aid
- 7.2.6. Cryovial rack
- 7.2.7. Sterile serological pipettes (2ml, 5ml and 25 ml)
- 7.2.8. Lab coat, gloves, sleeves
- 7.2.9. 70% Isopropanol
- 7.2.10. Sterile cleaning wipes
- 7.2.11. Trypan Blue (0.4% solution)
- 7.2.12. 1.5 ml microfuge tube and tube holder
- 7.2.13. P20 micropipettes and compatible tips

8. Procedure:

- 8.1. Inoculation of the Shaker Flask
 - 8.1.1. Prior to use, the medium requires supplementation with 4 mM GlutaMAX Supplement
 - 8.1.1.1.Prepare biological safety cabinet per Labconco Purifier Class 2 Biological Safety cabinet (BSC) Operation SOP
 - 8.1.1.2.Gather the following items, spray or wipe with 70% Isopropanol, and place in the biological safety cabinet.
 - Pipette aid (sanitize with cleaning wipes or 70% IPA)
 - 25ml sterile pipettes
 - 5ml sterile pipettes
 - 125-mL PETG Erlenmeyer shaker flask
 - Cryovial rack
 - Gibco viral production Medium
 - GlutaMax supplement 200mM
 - 8.1.1.3.In BSC aseptically transfer 29.4 ml of Gibco viral production medium to 125 ml PETG Erlenmeyer shaker flask.
 - 8.1.1.4. Aseptically transfer 0.6 ml of 200mM GlutaMax supplement to the Erlenmeyer shaker flask containing Gibco viral production medium

Quincy College 24 Saville Avenue Quincy, MA 02169 Document Num: UP32 Revision Number: 0 Effective Date: 17AUG22

Page **3** of **4**

SOP: Resuscitation and Culture of Viral Production Cells 2.0 -HEK293F

- 8.1.1. Label the shaker flask as VPC 2.0, [date], [group#], [Operator initials].
- 8.1.2. Remove a vial of VPCs 2.0 from liquid nitrogen and swirl in a 37°C water bath for 1 to 2 minutes to thaw the cells rapidly until only a small amount of ice remains Note:

 Do not submerge the vial in the water
- 8.1.3. Spray the vial with 70% Isopropanol and place it in the BSC.
- 8.1.4. Use 5-mL pipette, to aseptically transfer the entire contents of the cryovial into the shaker flask prepared in step 8.1.1.4.
- 8.1.5. Place the shaker flask containing complete growth media and PVC 2.0 in the CO₂ incubator shaker
- 8.1.6. Verify that the temperature is 37 ± 0.5 °C and percentage of CO₂ is 8 ± 0.5 %
- 8.1.7. Set the shake speed to 125 ± 5 rpm.
- 8.2. Monitoring/Sampling the shaker flask cell culture

After 3 to 4 days post inoculation, take 100 μ L samples to monitor cell growth and viability until Cell viability is \geq 90% with a viable cell density >1 × 10⁶ viable cells/mL

- 8.2.1. Prepare biological safety cabinet per Labconco Purifier Class 2 Biological Safety cabinet (BSC) Operation SOP
- 8.2.2. Collect the following items, spray with 70% IPA and place in Biological Safety Cabinet:
 - 1-microfuge tube
 - microfuge tube holder
 - 1-P20 pipette
 - pipette aid
 - 1 mL individually wrapped serological pipette
- 8.2.3. Remove shaker flask, from CO₂ incubator, spray 70% IPA and place in biological safety cabinet
- 8.2.4. Using a septic technique, remove $100 \,\mu L$ of sample from shaker flask and place into the 1.5 mL microfuge tube
- 8.2.5. Using the 100 µl of cell suspension from microfuge tube from the step above determine cell count and cell viability using automated cell counter
- 8.3. Subculture of HEK293F cells

Once the culture reaches 1 X 10⁶- 3 X 10⁶ cells/ml cell density they are subculture into a new flask.

- 8.3.1. Seed new flask at a cell concentration of $0.3 0.6 \times 10^6$ cells/ml
- 8.3.2. When density reaches $4 6 \times 10^6$ cells/ml subculture flask (3-4 days)
- 8.3.3. Cryopreserve the cells once the required density is reached or proceed for transfection after 4 passage post resuscitation.

Quincy College 24 Saville Avenue Quincy, MA 02169 Document Num: UP32 Revision Number : 0 Effective Date : 17AUG22

Page **4** of **4**

SOP: Resuscitation and Culture of Viral Production Cells 2.0 -HEK293F

9. History:

Revision	Effective Date	Preparer	Description of Change
Number			
0	17AUG2022	Isso Bayala &Hetal	Initial release
		Doshi	