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Today, in three parts

1. Process development and quality by design (QbD)

2. ANOVA and other statistics we never really
learned

3. Introduction to design of experiments
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Process Development 
and Quality by Design 
(QbD)
Section One
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Stages of development for a new 
product

Research

• Discovery

• Preclinical 
studies

Development

• Clinical studies

• Scale-up

Production

• Quality

• Compliance



Linking Product and Process 
Understanding
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Product Quality Attributes

• Identity

• Physicochemical properties

• Quantity

• Potency

• Product-related impurities

• Process-related impurities

• Safety

Product 
Efficacy

Product 
Safety
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Product Quality Attributes

• Identity

• Physicochemical properties

• Quantity

• Potency

• Product-related impurities

• Process-related impurities

• Safety
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Strength
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Fundamental Quality Attributes:
Monoclonal antibody
• Process-related impurities

• Host cell proteins
• DNA
• Small Molecules
• Leached Protein A

• Product-related impurities
• Degradation products
• Molecular variants with properties 

different than expected
• Truncated forms, aggregates

• Safety
• Microbial load
• Sterility
• Endotoxin
• Mycoplasma and adventitious virus
• Turbidity

• Quantity
• Protein content/amount
• Yield

• Potency
• Animal, cell, or biochemical assay

• Physicochemical properties
• Primary structure
• Higher order structure
• Molecular weight/size
• Isoform/charge pattern

• Identity
• Specific
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Terminology

• Quality Attributes 
• A physical, chemical, or microbiological property or 

characteristic of a material that directly or indirectly 
impacts quality

• Critical Quality Attributes (CQAs)
• A quality attribute that must be controlled within 

predefined limits to ensure that the product meets its 
intended safety, efficacy, stability and performance

• These are product specific, based on prior knowledge, 
nonclinical/clinical experience, risk analysis, etc.
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Developing Process 
Understanding

y = ƒ(x)

Quality Attributes

Man
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Methods
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Mapping the Linkage
Inputs: Outputs:

P1

P2

P3

M1

M2

CQA1

CQA2

CQA3

Relationships:
CQA1 = function (M1)

CQA2 = function (P1, P3)
CQA3 = function (M1, M2, P1)

P2 might not be needed in the 
establishment of design space

Process
Parameters

Material Attributes

Critical
Quality 
Attributes



ANOVA and other 
statistics we never really
learned
Section Two
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Extending Intro Statistics

• Courses often end with analysis of variance –
ANOVA

• ANOVA is all that is needed to understand industrial 
design of experiments

• Who’s comfortable with their knowledge of 
ANOVA?

• What can it be used for?

• What information does it give us?
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The Standard Normal

Allows us to work with null 
model centered on zero

Allows us to see how 
many standard 
deviations our 
observation is from the 
mean

s

)xx(
z i    

deviation standard

mean) -point  (data
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General form of a test statistic

• There are many different types of test statistics out 
there and many have the same general form

• z-score, t-statistic and F-statistic

• General form is a ratio of the difference on top 
divided by the variability on the bottom

iabilityvar

difference
  statistictest 
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Standardized Distributions

• Standard Normal
• We use this for individual data (via a z-score)
• A quick way to see if a data point is unusual or not

• t-distributions
• We use this for sample means (via a t-statistic)
• Used in methods to determine if a sample mean is different 

from the null (one-sample t-test) or if two groups are 
difference (two-sample t-test)

• F-distributions
• We use this for sample means (via a F-statistic)
• Used in methods to determine if two or more sample means 

are different (ANOVA)
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Our Approach to Hypothesis 
Testing
• Model what the data would like, if the null were 

true

• Compare our actual results results wrapped up in a 
test statistic to the null

• Ask whether our data would be expected or 
unexpected in the model

• Expected data supports the null (e.g. p-value greater 
than 5%)

• Unexpected data rejects the null (e.g. p-value less than 
5%)
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Hypothesis Testing needs a Null

• For hypothesis 
testing, we follow:

• Model

• Compare

• Ask

• Knowing how 
sample means 
behave, we can use 
this to define a Null 
Model

-Z SE    -Y SE   -X SE      0        X SE     Y SE    Z SE
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-5.4SE -2.6SE -1.1SE     0      1.1SE   2.6SE  5.4SE

A Two-Sample Example
Small Sample Size
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The two-sample t-statistic

SE

xx
tstat

)(
  

error standard

mean_2) sample - mean_1 (sample 12 

Allows us to work 
with null model 
centered on zero

Allows us to see 
how many 
standard errors 
our difference is 
from the null
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The p-value
• Once we calculate our t-stat from our data, a p-value is 

also generated that, in a number, tells us whether our 
data was likely or unlikely to be found, IF the null is 
true.

• The p-value is called a conditional probability. 

• On the condition that the null is true, it’s the probability 
of getting data as different from the null mean (or more 
different) as we did.

• Small p-values are good evidence against the null

• Large p-values are poor evidence
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Variance -- the square of standard deviation -- has this 
general form:

• Variance is also called a Mean Square and 
abbreviated as MS

MS
df

SS

Freedom of Degrees

Squares of Sum

1

)( 2

12 







n

xx

s

n

i
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One-Way ANOVA
partitions the sources of 
variability

Total Sum of Squares

SSTotal

Between (Factor) Sum of 
Squares

SSFactor

Within (Error) Sum of 
Squares

SSError

Find Fstat
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The natural F statistic

• The natural statistic that comes out of separating out 
these variance is the F-statistic

• You can see that as this number gets larger than 1, 
we can start to detect differences between treatment 
groups over the noise

noise

signal

MS

MS
F

error

treatment 
error

treat

within

between

variance

variance

variance

variance
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ANOVA Summary Table

Source df
Sums of 

squares, SS
Mean square, MS

(aka variance)
F-ratio

Treatment
(aka Between)

Error
(aka Within)

Total

EXAMPLE for media formulation study 25



The basic principles of 
experimental design (Fisher, 1930)
• Factorial principle

• Treatments are generated by combining the levels of factors

• Randomization
• The assignment of treatments to the experimental material, 

the order in which the runs are to be performed and other 
aspects of experiments are randomly determined

• Replication
• An independent repeat of each factor combination 

(experiment)
• Estimation of experimental error

• Blocking
• Used to reduce the variability induced by nuisance factors
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Example: Varieties of Wheat

• One of the earliest published example of a complete, 
randomized block design was from Sir Ronald Fisher’s 
1935 book, The Design of Experiments

• Goal: compare five varieties of wheat for highest yield

• Design:
• Treatment: variety of wheat

• Response: yield in bushels per acre

• Use blocks

27



Nuisances

• A nuisance is any possible source of variability other 
than the conditions you want to compare

• Anything other than the effects of interest (i.e. signal) that 
might affect the response

• For example, known differences in the terrain (soil, 
light, water) will be a nuisance to the design and our 
ability to “see” a difference

28



Nuisances

• Randomizing turns a nuisance influence into chance 
error

• Random assignment turns possible bias into chance error 
(e.g. this gets added to our MSerror term)

• Blocking turns nuisance influence into a factor of the 
design

• Sort your material (i.e. experimental units) into subgroups 
where within each the nuisance influence is similar then 
run a bunch of mini-completely randomized experiments in 
parallel, one for each group

29



Wheat example: nuisances

• Weather – some growing seasons better than 
others

• Land – variation in soil

• Fisher had 8 areas of land to work with
• Knowing that each piece of land was different – he 

wanted to block the influence between different areas

• He subdivided each area into 5 plots, one for each 
variety

• Each area was it’s own mini-CR experiment

30



Fisher’s Design

Experimental Wheat Varieties
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Large variation in nuisance 
variable(s) (vertically)

Little variation in nuisance 
variable(s) (horizontally)
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ANOVA with Blocks

• We take advantage of 

Total SS = SStreatment + SSerror

The ability to attribute variability to different sources

• To now become

Total SS = SStreatment + SSblock + SSerror

This is in the denominator of our test statistic; if 
we can make this smaller with blocks = better 
design 32



Source df
Sums of 
squares

Mean square F-ratio

Treatment

Error

Total

Source df
Sums of 
squares

Mean square F-ratio

Treatment

Blocks

Error

Total

Our original 
ANOVA gets a new 
row added to the 

table

EXAMPLE for media formulation study 33



Handling influential variables in an 
experiment
• If you can (and want to), fix an influential variable

• e.g., use only one media formulation, cell strain, process condition 

• Downside?

• If you don’t/can’t fix an influential variable, block its effect
• e.g., block the influence of the variable

• Downside?

• If you can neither fix nor block a variable, randomize it

• e.g. randomize to deal with unknown factors

>> “Block what you can, randomize the rest”
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ANOVA and Linear Regression

• Simple linear regression is a one-way ANOVA
• y = mx + b

• x is the single factor (with some number of levels) 
describing the response, y

• Multiple linear regression includes more than one 
factor

• y = m1x1 + m2x2 + … + b

• Each x is a factor (with some number of levels) 
describing the response, y

• Different sides of the same coin…
35



ANOVA and the regression

• r2 is one of the more abstract concepts in regression

• This value comes from an ANOVA analysis
• SSTotal = SSRegression + SSError

2

Observed

2

Predicted2

)y - (y of sum

)y - (y of sum
 

SST

SSR
r
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Introduction to Design of 
Experiments
Section Three
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Definition of DoE

Statistical design of experiments:
• The process of planning the experiment so that 

appropriate data that can be analyzed by statistical 
methods will be collected resulting in valid objective 
conclusions. [D. C. Montgomery]

• DoE is a structured, organized method for determining 
the relationships among factors affecting a process and 
its output. [ICH Q8]
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Strategy of experimentation: 
OFAT vs. DOE
Traditional approach to experimentation

• Study one variable (factor) at a time (OFAT) holding all 
other variables constant;

• Simple process, but doesn’t account for interactions;

• It is inefficient.

Factorial design or statistically designed experiments

• Study multiple factors changing at once;

• Accounts for interactions between variables;

• Maximize information with minimum runs.
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Typical unit operation or process

40



Examples of factors and responses
in cell culture
• Controllable factors, xi

• Temperature
• pH
• Agitation rate
• Dissolved oxygen
• Medium components
• Feed type and rate

• Responses, yi
• Product concentration
• Cell viability
• Product characteristics (glycosylation, ..)

41



Factors and responses for column 
chromatography

42



Phases of a DoE process:
planning, conducting and analyzing 
an experiment

1. Statement of problem

2. Choice of factors, levels, and ranges

3. Selection of the response variable(s)

4. Choice of design

5. Conducting the experiment

6. Statistical analysis

7. Drawing conclusions, recommendations

DoE helps only with points 4 and 6!
43



The most common 2k full factorial 
design

44

The classic 23 full factorial (2-level 3 factors) 
design graphically:

The points involved in the 
sample calculations of the 
main effects of A (X

1
):

and the interaction of 
A & C (X

1
X

3
):



DoE objectives and process 
spaces
• Screening/Characterization

• Which factors are important? 
• What are the appropriate ranges for 

these vital factors?

• Optimization
• Detailed quantification of the effect 

of the vital factors
• What are the optimal ranges for 

these factors?

• Robustness testing
• Verify that process is robust to small 

variations in the input parameters

45



There are numerous other designs
Can find them (and their purpose) in texts and generate them using 
statistics packages.

A circumscribed form of a central 
composite design (CCDs), 
a.k.a. Box-Wilson designs, with center 
and star points.

A Box-Behnken design. Note that it 
avoids the corners of the design 
space—maybe a good thing if they are 
extreme conditions.

Two images from Matlab:

46



A catalogue of designs

47

Design Use

Full Factorial Characterization

Fractional Factorial Screening

Plackett-Burman Screening

Central Composite Optimization

Box-Behnken Optimization

Mixture For mixtures (factors are 
compositions: ex, 
x1+x2+x3=1)



Design Selection Guideline

Number
of Factors

Comparative
Objective

Screening
Objective

Response Surface 
Objective

1
1-factor completely 
randomized design

_ _

2 - 4
Randomized block 

design
Full or fractional 

factorial

Central 
composite or Box-

Behnken

5 or more
Randomized block 

design

Fractional 
factorial or Plackett-

Burman

Screen first to 
reduce number of 

factors
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A 23 replicated factorial design: GFP 
expression by E. coli in baffled shake 
flasks
• Medium:

• Bacto Yeast Extract - 25 g/L; Tryptic Soy Broth - 15 g/L; 
NH4Cl - 1 g/L; Na2HPO4 - 6 g/L; KH2PO4 - 3 g/L; Glucose 
- 10 g/L.

• Culture conditions:
• 250-mL baffled shake flasks, 25-mL culture volume, 

agitation speed 400 rpm, growth temperature 37°C.
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Defining the factors and their 
levels
Several factors affect GFP expression:

• Induction temperature 
• generally 37°C or lower. During induction the temperature can be 

decreased with respect to the growth phase;

• Induction length
• three hours allows to recover the cells the same day of inoculation; 19 

h corresponds to an overnight;

• Inducer concentration
• generally the range 0.1-1 mM is used. Using a small quantity of inducer 

saves money.
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Choosing the design: a 23 full 
factorial design

51
Run order is the randomized standard order

*Replicated twice



Running the experiment
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Cube Plot
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ANOVA – Minitab Output 1
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Effects, regression coefficients –
Minitab Output 2
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Interpreting results: interaction 
plot
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Temperature x time interaction 
plot
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Interpreting results

• The main effect of the inducer concentration (factor 
C) and all its interactions (AC, BC, ABC) are not 
significant.

• When we changed the level of C in the experiment 
it was like if we were replicating a treatment (for 
example, treatment abc and treatment ab are 
considered replicates).

• We would therefore work with a reduced model 
that explains GFP titer…
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Effects, regression coefficients –
Reduced model
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