

Validation Exemplifies Process Understanding

FDA Definition

"The process of demonstrating, through documented evidence, that a process, procedure, piece of equipment, analytical method, or facility will consistently produce a product or result that meets predetermined specifications and quality attributes."

Validation

- Documented evidence that
 - the facility, equipment, and utilities all perform as expected
 - the analytical methods used in the quality control laboratory perform as expected
 - each step of the production process contributes to a final product that meets all of the quality attributes and specifications

Validation

- Validation is an external check on the performance of a system and ultimately the entire manufacturing process
 - If the process performs properly, it should produce a product that meets predetermined specifications
 - If it does not perform properly, a step in the process exists that is either inadequately understood or is not performing as designed.

Demonstration and Documentation

- Validation also forces the biomanufacturer to examine assumptions about equipment, materials, procedures, and the entire production process
 - one can assume that material placed in an autoclave will be sterilized if the autoclave is working properly
 - But how can that person know that the autoclave is working properly or that it sterilizes the material to meet the necessary established standard if it is working properly?

Validation Evolution

- Validation remains a time-consuming and expensive process
- It is improved from the old mindset validate anything that moves and don't move anything that is validated
- The current approach incorporates process understanding and risk assessment towards an elimination or reduction of those risks

Validation Evolved

- Product and process knowledge culminate in validation activities
 - Documentation that the controlled processes result in products with desired quality attributes
- To this end, biomanufacturers should
 - Understand the sources of variation
 - Detect the presence and degree of variation
 - Understand the impact of variation on the process and ultimately on product attributes
 - Control the variation in a manner commensurate with the risk it represents to the process and product

Demonstrating Process Parameters

- Temperature-mapping studies to ensure that all areas within the vessel achieve the desired temperature
- The mixing rate of the material needs to be documented to prove that as the solution is mixed it maintains its temperature.
- Testing under worse-case scenarios
 - Maximum volume, lowest mixer setting, partially-operable heater, other plausible mechanical issues
- Verification that if specifications are met at the limits of the ranges, the specifications will assuredly be met at the normal operating range
 - All with no impact on product quality!

Risk-based Validation

- Risk analysis is a formal analytical activity
 - Identify
 - Assess
 - Manage
- Risks considered in this process are related to
 - Product
 - Patient
 - Employees of the biomanufacturer

Identifying Systems

- Develop a comprehensive list of all systems in the manufacturing operation, categorized by functional area
 - facility, equipment, and utility systems
 - analytical equipment systems
 - computerized systems
 - cleaning systems

Systems Impact Assessment (SIA)

- The Systems Impact Assessment (SIA) is a process to determine which systems should be subject to qualification, which evaluates the impact that a system has on product quality
- Each identified system is then categorized as one of the following
 - Direct Impact (DI) system
 - Indirect Impact (ID) system
 - No Impact (NI) system

Risk-based SIA

- Conducted by a multi-disciplinary team consisting of representatives from engineering, validation, operations, quality assurance, etc
- With the traditional approach toward validation, every system is qualified and validated
- With the risk-based approach, qualification activities are limited to Direct Impact Systems (DI)

Risk assessment

- patient safety: risk of a patient being physically harmed
- product quality: risk that the product quality profile (identity, strength, quality, or purity) will be negatively impacted
- compliance: risk of a regulatory enforcement action (e.g., FDA, EMA, etc.) or the delay of a product approval

